
Bouncing ball on a vibrating periodic surface
Avishai Halev, and Daniel M. Harris

Citation: Chaos 28, 096103 (2018); doi: 10.1063/1.5023397
View online: https://doi.org/10.1063/1.5023397
View Table of Contents: http://aip.scitation.org/toc/cha/28/9
Published by the American Institute of Physics

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1908776651/x01/AIP-PT/Chaos_ArticleDL_0618/Chaos_1640x440Banner_2-18.jpg/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Halev%2C+Avishai
http://aip.scitation.org/author/Harris%2C+Daniel+M
/loi/cha
https://doi.org/10.1063/1.5023397
http://aip.scitation.org/toc/cha/28/9
http://aip.scitation.org/publisher/


CHAOS 28, 096103 (2018)

Bouncing ball on a vibrating periodic surface
Avishai Halev and Daniel M. Harrisa)

Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599,
USA

(Received 23 January 2018; accepted 26 March 2018; published online 13 September 2018)

We present an investigation of a partially elastic ball bouncing on a vertically vibrated sinusoidal
surface. Following the work of McBennett and Harris [Chaos 26, 093105 (2016)], we begin by
demonstrating that simple periodic vertical bouncing at a local minimum of the surface becomes
unstable when the local curvature exceeds a critical value. The resulting instability gives rise to a
period doubling cascade and results in persistent horizontal motion of the ball. Following this tran-
sition to horizontal motion, periodic “walking” states—where the ball bounces one wavelength over
each vibration cycle—are possible and manifest for a range of parameters. Furthermore, we show that
net horizontal motion in a preferred direction can be induced by breaking the left-right symmetry of
the periodic topography. Published by AIP Publishing. https://doi.org/10.1063/1.5023397

When a ball bounces on a vibrating wavy surface, one
might expect the ball to ultimately become trapped within
a valley and bounce in place. While this fate is possible in
some cases, we show that a periodic impact surface can
actually induce persistent horizontal motion of the ball
along the surface. A variety of different possible motions
are observed, including a “walking” state wherein the ball
advances regularly in one direction along the surface. The
final direction of motion of such walking states is highly
sensitive to both initial conditions and the symmetry of the
underlying surface.

I. INTRODUCTION

Fluid droplets may bounce indefinitely on a vibrat-
ing fluid bath, exhibiting complex vertical dynamics which
depend sensitively on the droplet size, characteristics of the
fluid, and the vibration profile.2–4 At each impact with the
underlying bath, the droplet deforms the free surface, gen-
erating waves at the interface. In certain parameter regimes,
the droplets can interact with the waves created at previ-
ous impacts and begin to progress horizontally across the
surface.5,6 This fluid system represents a macroscopic wave-
particle duality and has been shown to have behaviors rem-
iniscent of some single-particle quantum systems.7,8 In this
work, we explore the dynamics of a simpler bouncer system
and demonstrate that the interaction of a bouncer and fixed
waveform can similarly lead to directed motion and other
exotic dynamics.

This complex fluid system is reminiscent of the cele-
brated bouncing ball problem, wherein a ball bounces repeat-
edly on a vibrating rigid platform. This problem has been
investigated for decades and still constitutes an active area
of research. The basic physical system is conceptually simple
yet exhibits surprisingly rich dynamical behaviors.9 The one-
dimensional problem, wherein the ball bounces vertically on
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a flat platform in a gravitational field, is the scenario most fre-
quently explored in the literature.10–25 Some extensions of the
1D case have focused on multiple spatial dimensions where
the ball is not physically constrained in the horizontal direc-
tion and bounces on a non-flat topography.1,26–29 In particular,
it has recently been demonstrated in both experiment and the-
ory that a concave impact surface can actually destabilize
purely vertical bouncing and result in persistent horizontal
motion of the ball.1,29 It has been shown that directed horizon-
tal motion of passive bouncers can be achieved by breaking
the symmetry of the vibration,30 the individual particles,31 or
the impact surface.32 For many applications in granular or soft
matter physics, achieving net horizontal motion of individual
particles is desirable.

In the present work, we explore the classical two-
dimensional bouncer model with an underlying periodic
topography. For the case of a sinusoidal impact surface, we
demonstrate that a critical curvature exists beyond which
purely vertical bouncing at a minimum becomes unstable and
horizontal motion naturally ensues. Ultimately, the particle
can escape a single wavelength and bounce horizontally in
irregular (diffusive-like) or regular bouncing modes. Addi-
tionally, we demonstrate that even a slight breaking of the
lateral surface symmetry can result in a net directed motion
of individual bouncers.

II. THE 2D MODEL

In this work, we investigate the motion of a partially
elastic ball bouncing on a vibrating platform with sinusoidal
topography. We employ the 2D model as outlined in McBen-
nett and Harris,1 but with a vibrating platform of surface
height

h(x, t) = −A cos(kx)+ γ sin(ωt), (1)

where A and k are the amplitude and wavenumber, respec-
tively, of the static topography. From here on, we work in
non-dimensional coordinates, using the time scale 2π

ω
and the

length scale 2π2g
ω2 as in Luck and Mehta.14 This choice results
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in the dimensionless surface height

ψ(ξ , τ) = f (ξ)+ g(τ )

= − η

2π
cos(χξ)+ 


2π
sin(2πτ), (2)

where τ and ξ are the non-dimensional time and horizontal
coordinates, respectively. Furthermore, we define dimension-

less sinusoidal amplitude η = Aω2

πg , wavenumber χ = 2π2gk
ω2 ,

and plate amplitude 
 = γω2

πg , where g is the acceleration due
to gravity.

The 2D model of McBennett and Harris1 has four inde-
pendent quantities that are updated and recorded at each
successive impact n: the time at which contact occurs (τn), the
vertical and horizontal take-off velocities (vn and un, respec-
tively), and the horizontal location of impact (ξn). The free-
flight equations along with relations for updating the relative
velocities after impact define an implicit map for the system
(τn, vn, un, ξn) → (τn+1, vn+1, un+1, ξn+1). In this model, it is
assumed that contact occurs instantaneously and that the rela-
tive normal and horizontal velocities are updated accordingly
using a constant coefficient of restitution. The normal and tan-
gential coefficients of restitutions are denoted as αN and αT ,
respectively, and take constant values between 0 and 1. Addi-
tionally, any effects due to a finite ball diameter, including
rotation and air resistance, are neglected in the present model.
We thus should emphasize that our model is for a point mass
(R = 0) or for cases where un � Rθ̇n, where R and θ̇n are the
dimensionless radius and rotation rate of the ball, respectively.

III. SIMPLE VERTICAL BOUNCING AND HORIZONTAL
MOTION

For η = 0, the governing equations correspond to the
flat-plane scenario for which Luck and Mehta14 demon-
strated that the system allows for a stable simple ver-
tical bouncing state (τn+1 = τn + 1, vn+1 = vn, un+1 = un =
0, ξn+1 = ξn) when the forcing amplitude 
 lies within the
following range:

1 − αN

1 + αN
< 
 <

[(
1 − αN

1 + αN

)2

+
(

2(1 + α2
N )

π(1 + αN )2

)2
]1/2

. (3)

McBennett and Harris1 subsequently showed that such sim-
ple vertical motion is horizontally stable at the vertex of a
parabola below a critical parabolic coefficient κc. Similarly,
we observe that this simple vertical motion is also horizon-
tally stable up to critical values of the coefficients about any
minimum of the sinusoid. By conducting a linear stability
analysis of the simple vertical bouncing (SVB) state, we arrive
at a linearization matrix identical to that of McBennett and
Harris1 with κ corresponding to ηχ2

4π for the present topog-
raphy. This coefficient is naturally the 2nd-order coefficient
in the Taylor expansion of the sinusoid about any minimum
ξ0 = 2mπ/χ , m ∈ Z:

f (ξ) ≈ − η

2π
+ ηχ2

4π
(ξ − ξ0)

2 + · · · . (4)

Beyond this region (specifically when ηχ2

4π exceeds a critical
value), a flip bifurcation occurs resulting in persistent hori-
zontal motion of the ball, as can be seen for a representative
set of parameters in Fig. 1(a).

IV. WALKING SOLUTIONS

For a wide variety of parameters and initial conditions,
periodic “walking” motion—wherein the ball periodically
travels exactly one wavelength each vibration cycle—occurs.
This type of state has been predicted for the conservative
elastic bouncing ball system (without vibration).33 We will
explore this regime with αN = 0.8, αT = 0.3, and 
 = 0.2
(for which κc = 1.0636 . . .); however, qualitatively similar
motion manifests for other parameters as well. Note that sim-
ple vertical bouncing on a flat plate is stable for these param-
eters, and thus any departure from this is directly attributable
to the topography. For our selected parameters, walking is
observed immediately after an irregular diffusive-like region
as η is increased incrementally, as can be seen in Fig. 1(a).
Note that while the particle under consideration in Fig. 1
walks in the negative χ direction, particles in the stable walk-
ing regime walk in the positive or negative direction with
equal probability. The eventual direction of walking is highly
sensitive to the initial conditions.

FIG. 1. (a) Numerical prediction for the last 400 horizontal velocities un as η
is gradually increased, for the case when αN = 0.8, αT = 0.3, 
 = 0.2, and
χ = 8π . (b) Expanded view of period-doubling cascade observed follow-
ing the walking region. The diagrams in the figure are for one set of initial
conditions (see the supplementary material).
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As the wave amplitude η is increased further, the period-
one walking solutions lose their stability and a period dou-
bling cascade is again observed, as seems to be a hallmark for
the bouncing ball system. Higher modes of walking are possi-
ble and period-two, -four, -eight, and -sixteen walking states
can be seen in Fig. 1(b).

While unobservable in simulation, unstable walking solu-
tions are also possible. To further explore this walking regime,
we seek all possible solutions that satisfy τn+1 = τn + 1,
vn+1 = vn, un+1 = un, and ξn+1 = ξn + 2π/χ . Although these
conditions only find walking solutions in the positive direc-
tion, the negative walking solutions are identical through sym-
metry. Applying these conditions to the equations of motion,1

the required horizontal velocity falls out immediately

u∗ = un = 2π

χ
. (5)

Using the walking conditions, the vertical velocity v∗ = vn

can be solved for numerically as well. The resultant v∗
depends only on the coefficients of restitution αN and αT and
the wavenumber χ ; it is independent of both amplitude η
and forcing 
 as well as the other dynamical variables. The
walking conditions also result in the necessary condition

v∗ + 
 cos(2πτ∗)− 1 = 0, (6)

where τ∗ = τn mod 1. Thus, for all v∗, we have a pair of
possible solutions τ∗

τ∗ = ± 1

2π
cos−1

(1 − v∗



)
. (7)

For such solutions to exist, it must be the case that
|1 − v∗| ≤
. Since v∗ is independent of η and the other
dynamical variables, for any given values of αN and αT , there
is a minimum χ for which solutions can exist as dv∗

dχ ≥ 0 and
v∗ < 1 in the relevant regime. For our chosen parameters, this
critical value is χc ≈ 5.21106π .

Two possible positional values ξ∗ = ξn mod 2π/χ can
also be determined once v∗ is known. These two points
are symmetric about the sinusoid’s point of inflection such
that the local slope is equal at each point. The four unique
combinations of τ∗ and ξ∗ each correspond to a possible walk-
ing solution. Again, note that corresponding solutions with
τ = τ∗, v = v∗, u = −u∗, and ξ = −ξ∗ exist for walking in
the negative direction.

For any given wavenumber χ ≥ χc, there exists a mini-
mum amplitude ηc such that the positional values ξ∗ are real
(and thus walking solutions exist):

ηc = αN + αT

2χ(αN + 1)

[
(2 − v∗)χ

−
√

16π2(αN + 1)(αT − 1)

(αN + αT )2
+ χ2(v∗ − 2)2

]
. (8)

While this lower bound is defined in terms of the vertical
velocity, v∗ itself is numerically determined from αN , αT , and
χ ; thus, this lower bound is similarly determined by only
those parameters.

FIG. 2. Prediction for region where walking states exist (filled region) for
αN = 0.8, αT = 0.3, 
 = 0.2. The black portion corresponds to points where
a stable walking solution exists.

Of the four possible walking solutions for any given set
of parameters, at most one is stable. Stability of walking solu-
tions is determined by linearization of the governing equations
about the numerically determined walking solution (see the
supplementary material for extended details). By analyzing a
range of values of η and χ , a map of solutions appears and the
lower bounds on both parameters for walking to exist become
apparent (Fig. 2). Note that while stable solutions may exist
for a set of parameters, it is not guaranteed that the system
will lock into those walking solutions, given the arbitrary ini-
tial conditions (or it may take a large number of bounces to
do so).

V. BREAKING SYMMETRY

In many applications, directed transport of individual
particles is desirable. Since motion in which the particle
moves in either direction with equal probability is unhelpful
in this regard, we extend our model by breaking the left-right
symmetry of our sinusoidal topography in order to see if a
preferred direction of motion can be induced.

To begin our discussion, consider the Fourier series for a
sawtooth wave of amplitude η

2π :

fs(ξ) = − η

π2

∞∑
n=1

1

n
sin(nχξ), (9)

which converges to a sawtooth wave for all ξ 
= 2πm/χ ,
m ∈ Z. Truncating this series after the second term moti-
vates a simple functional form for continuously breaking the
symmetry of the original sinusoid

f (ξ) = −η�
2π

[
sin(χξ)+ η2

2
sin(2χξ)

]
, (10)

where η2 is a selected parameter between zero and unity that
measures the degree to which the symmetry is broken, and

� = (1 − 4η2 + μ)2

2 (1 − η2) 3/2
√
μ− 3η2 (1 − 2η2 + μ)

(11)

fixes the peak amplitude of the topography to η

2π for

μ =
√

1 + 8η2
2. Sample topographies for different values of

η2 are shown in Fig. 3(a).
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FIG. 3. (a) Example of profiles of periodic surface with increasing η2. Curves
shown are for η2 = 0, 0.25, 0.5, 0.75, and 1 (from dark to light, respectively).
[(b) and (c)] Histogram of horizontal displacements per bounce as a function
of η2. Each vertical column represents a histogram that is normalized such
that the lightest (white) spot corresponds to the peak of the histogram for that
given value of η2. Each histogram is generated of the horizontal velocities
observed for 100 independent balls started with different initial conditions. In
part (c), the blue dots represent the time-averaged horizontal velocity.

We analyzed this system using η = 0.043 and χ = 8π ,
a regime which eventually displays period-one walking with
unit probability in the symmetric topography (η2 = 0). The
interval 0 < η2 < 0.08 provides the most insight into forcing
walking in a preferred direction. As η2 → 0.068 . . ., the prob-
ability of walking in the positive direction approaches unity
[Fig. 3(b)], as the likelihood of locking into a negative walk-
ing state vanishes. These increasing probabilities also align
with a period doubling bifurcation of the positive walking
states.

For intermediate values of η2—approximately the range
0.1 < η2 < 0.98—the particles exhibit irregular motion but

tend (on average) to drift in the positive direction. How-
ever, this motion is inefficient in that average drift rate is
significantly slower than in the forced walking regime. For
η2 > 0.98, the bulk motion of the particles actually reverses
the direction entirely and proceeds in the negative χ direction,
locking into period-two walking such that ξn+2 − ξn = 2π/χ
(following an initial transient phase in the positive direction).
The special case η2 = 1 presents a unique topography; a sad-
dle point manifests in each wavelength and simple vertical
bouncing at such points becomes possible.

VI. CONCLUSIONS AND OUTLOOK

In this work, we have elucidated some of the rich behav-
iors possible for individual particles bouncing a vibrating
impact platform with periodic topography. In particular, we
identified and analyzed a new periodic “walking” state and
also demonstrated that net directed motion can be achieved
by breaking the horizontal symmetry of the surface topogra-
phy. Enhancement of transport properties using topography
could be important for applications relating to the transport
or separation of vibrated granular materials34,35 or for the
manipulation of droplets on a vibrating substrate for digital
microfluidics.36

Future work will further analyze diffusive-like behavior
that manifests in various parts of the parameter space, as well
as the inclusion of additional physics in order to be able to
directly compare to experimental observations. In addition,
we aim to consider time-dependent sinusoidal topographies
which will permit us to model the motion of granular particles
on a resonating plate37–39 or of small fluid droplets bouncing
on standing Faraday wave fields.

SUPPLEMENTARY MATERIAL

See supplementary material for additional details on the
walking solutions and stability analysis and for movies of
some possible bouncing and walking states.
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