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Abstract

Microgrids – decentralized electrical grids that can function
both in conjunction with wide area macrogrids and without
– are a powerful tool to address energy resiliency and cli-
mate change mitigation. Microgrid control, however, remains
a challenge; their bespoke nature and the existence of multi-5

ple sources of uncertainty lead to a control problem that tra-
ditional grid modeling and control techniques are ill-suited to
handle. In this work, we analyze three different approaches
to the microgrid control problem: rule-based control, model
predictive control, and reinforcement learning in the con-10

text of forecast uncertainty and model uncertainty. We uti-
lize random network distillation and domain randomization to
support reinforcement learning in the context of uncertainty
and show that reinforcement learning algorithms are able to
achieve performance comparable to model predictive control15

algorithms and superior to rule based control algorithms in
scenarios with no uncertainty and outperform model predic-
tive control algorithms under model uncertainty. We present
an in-depth analysis of algorithm performance on one micro-
grid and a high-level overview of additional microgrids and20

build a simulator for future research.

1 Introduction
Driven by the urgency of climate change, the energy sector
is faced with the necessity of rapid transformation in order to
continue to meet energy needs while meeting ambitious sus-25

tainability targets. Microgrids – clusters of distributed en-
ergy resources, including local electricity generation, con-
sumption, and storage capacity – have emerged as a pow-
erful tool in this revolution due to their ability to increase
energy system efficiency by allowing energy generation and30

consumption to be located in closer proximity. Microgrids
also aid system resiliency and reliability by providing alter-
native sources of energy during macrogrid failures.

However, significant challenges persist before widespread
adoption of microgrid technology is feasible. Foremost35

among them is the difficulty in controlling microgrids effi-
ciently and effectively. Traditional microgrid control models
such as model predictive control (MPC) are model-based,
requiring explicit models of the various microgrid compo-
nents as well as accurate load and production forecasting40

(Bordons, Garcia-Torres, and Ridao 2020). MPC approaches
can also be computationally intensive, involving the frequent

solution of large optimization problems (Lamburn, Gibbens,
and Dumble 2014).

Due to their small scale, microgrids encounter significant 45

volatility compared to wide-area macrogrids. This volatil-
ity manifests in multiple ways, including dynamic elec-
trical market prices, demand and photovoltaic (PV) pre-
diction uncertainty, and modeling uncertainty in microgrid
components such as batteries (Nakabi and Toivanen 2021). 50

Stochastic MPC approaches attempt to manage this problem
by generating trajectories and utilizing their empirical mean
for forecasting (Zhang et al. 2018).

Reinforcement learning approaches have recently
emerged as a promising solution to the microgrid control 55

problem under uncertainty. In (François-Lavet et al. 2016),
a convolutional neural network architecture was used as a
Q-learner in a discrete action space environment; both cur-
rent and previous state information is passed to the agent in
order to extract meaningful features from time-series. Zeng 60

et al. treat the microgrid control problem as a finite-horizon
Markov decision process (MDP) and use approximate
dynamic programming in conjunction with a recurrent
neural network to make decisions under uncertainty (Zeng
et al. 2019). In the continuous control space, Guo et al. use 65

proximal policy optimization algorithms (PPO) as a model-
free method of microgrid control, while Liu et al. show that
deep deterministic policy gradient (DDPG) algorithms are
effective in a microgrid with stochasticity without direct
modeling of the uncertainty (Guo et al. 2022; Liu et al. 70

2023). These works broach the problem of uncertainty
handling in microgrid control by applying reinforcement
learning algorithms but do not make specific modifications
to directly enhance performance under uncertainty.

We expand on the above and explicitly lay out conditions 75

for efficacy of reinforcement learning algorithms in electri-
cal microgrids of increasing uncertainty, using techniques
tailored for stochastic scenarios. We utilize forecasts of vary-
ing lengths and accuracies as well as battery models of vary-
ing accuracy. In addition to usage of PPO and DDPG, we in- 80

corporate domain randomization (DR) and random network
distillation (RND) to encourage exploration and generaliza-
tion.

Overall, we quantify different levels of microgrid uncer-
tainty and forecast lengths and compare reinforcement learn- 85

ing, model predictive control and rule based control algo-



rithm across these levels. Our main contributions are as fol-
lows:

1. Microgrid control overview: we consider three methods
of controlling microgrids – rule-based control (RBC),90

MPC, and RL – and show that reinforcement learning
outperforms traditional algorithms in high-uncertainty
scenarios.

2. Performance under model uncertainty: we analyze these
methods of controlling microgrids under battery model95

uncertainty and show that RL models overtake MPC in
performance as uncertainty increases.

3. Performance under forecast inaccuracy: we consider
forecasts of varying accuracy and show that while
forecast-dependent MPC grow inaccurate as forecast in-100

accuracy increases, this effect is minor due to replanning.
4. Modular microgrid simulator: we build an open-source

microgrid simulator that is able to simulate custom mi-
crogrids at the tertiary level with arbitrary combinations
of microgrid components. This simulator is able to han-105

dle constraints internally, allowing algorithms to focus on
economic optimization. Using this simulator, we present
benchmarks for future research.

The paper is organized as follows. In Section 2, we intro-
duce the microgrid control problem followed by a descrip-110

tion of the microgrid simulation environment and sources
of uncertainty in Section 3. In Section 4, we lay out the
algorithms under consideration, including rule-based con-
trol, model predictive control, reinforcement learning, do-
main randomization, and random network distillation. We115

present our results in Section 5 and conclude with a discus-
sion in Section 6.

2 Background
Microgrids are small, self-contained electrical grids that
can operate both standalone or incecction with the over-120

all macrogrid. Specifically, they are a combination of loads
(energy demands) and distributed energy resources (electric
generation units located near the source of demand) with an
explicit electrical boundary, acting as a single controllable
entity (Olivares et al. 2014). Microgrids generally contain125

the following components:

1. Local generation: local sources of energy, such as on-site
solar panels, wind turbines or gas generators (gensets).

2. Consumption: sources of energy demand.
3. Energy storage: batteries or accumulators to ensure130

power quality and provide backup power.
4. Point of common coupling: the connection to the main

grid. While many microgrids contain a point of com-
mon coupling, some do not; these islanded microgrids
are commonly found in remote sites.135

All of these components can be stochastic: batteries can
charge or discharge at unpredictable rates, for example, and
demand is variable. Stochasticity in the point of common
coupling occurs when the overall macrogrid is unstable and
prone to outages, in which case the macrogrid is referred140

to as a weak grid; macrogrids with no outages are consid-
ered strong grids. Microgrids generally serve a small com-
munities or geographic areas and are typically powered by
a combination of renewable energy sources and traditional
fossil fuels. 145

In our work, we focus on the tertiary level of microgrid
control at the hourly scale. At this level, the main concern
is system level optimization and energy management with
a secondary focus on economic efficiency and emissions.
Controls manage the dispatch of energy generation compo- 150

nents with the aim of optimizing economic cost while ensur-
ing energy production and consumption remain balanced.

2.1 Rule-Based Control
Rule-based control (RBC), also referred to as expert or
heuristic control, is a type of control strategy that uses a 155

set of predefined rules or heuristics to determine the con-
trol action for a given process (Grosan and Abraham 2011).
These rules can be seen as an expert-defined decision tree
from which to make decisions. RBC is relatively simple to
implement and has been used in a variety of applications, 160

such as ship energy systems, geoscience, agricultural pest
management, and sensor control (Leondes 2001).

RBC is a common choice for microgrid energy manage-
ment (Fatin Ishraque et al. 2021; Shezan et al. 2021) due to
its simplicity and interpretability, which is valuable in com- 165

municating information to stakeholders and regulators as
well as detecting and addressing system issues. As rules can
be modified to reflect changing conditions, RBC is suited
for microgrid control, where the available energy sources
and demand for power may vary over time. However, the 170

number of rules scales with the number of potential input/-
control combinations, and defining an appropriate rule set
to handle changing conditions or unforeseen scenarios can
become cumbersome or even impossible.

2.2 Model Predictive Control 175

Model Predictive Control (MPC) is a control strategy that
uses a model of a process to predict its future behavior and
optimally control its inputs in order to achieve a desired out-
put (Schwenzer et al. 2021). This is done by optimizing the
underlying model over a future window, applying one set of 180

controls, iterating to the next step and repeating.
MPC is widely deployed in industrial control systems due

to its ability to handle constraints and optimize performance
over a future horizon (Qin and Badgwell 2003). In microgrid
applications, studies have shown that MPC can save up to 185

30% of energy usage when compared to using traditional
RBC methods (Dai, Liu, and Zhang 2020; Mirakhorli and
Dong 2016). However, MPC depends heavily on a model
and forecast for accurate results, and inaccurate models and
forecasts can lead to underperformance (Lucia et al. 2014). 190

2.3 Reinforcement Learning
Reinforcement learning (RL) is a subfield of machine learn-
ing that focuses on training agents to make decisions based
on maximizing a reward signal. In an RL problem, the agent
interacts with an environment by taking actions and receiv- 195

ing feedback in the form of rewards or penalties depending



on the success or failure of those actions. Through this trial-
and-error process, the agent learns to make better decisions
over time (Sutton and Barto 2018).

RL’s ability to learn in situations where analytic solutions200

are unavailable or environmental information can only be
collected through interaction is a powerful paradigm, and
RL has been successfully applied to a variety of domains
(Naeem, Rizvi, and Coronato 2020). However, RL can be
computationally intensive and sensitive to both hyperparam-205

eter and system stochasticity (Mahmood et al. 2018). In our
work, we alleviate these issues in the context of microgrid
control by utilizing DR and RND techniques, which encour-
age agent exploration and reduce sensitivity to underlying
stochasticity.210

Domain Randomization Generalization to unseen data –
specifically, for real world transfer – is a task that is notori-
ously difficult in RL (Cobbe et al. 2019). In order to bridge
this gap, we use domain randomization (DR) to allow the
agent to experience a greater breadth of scenarios.215

DR is based on a simple concept: an agent exposed to
a wide variety of environments will be better prepared to
adapt to an unseen scenario – such as one in the real world
– than one trained repeatedly on a single simulated envi-
ronment. This idea is accomplished by training on environ-220

ments based on a ground-truth environment where certain
situational parameters are randomized before each episode
(Tobin et al. 2017). Agents are trained on trajectories that
are collected from interaction with these randomized envi-
ronments; once trained, they are able to generalize well to225

unseen tasks. More sophisticated domain randomization ap-
proaches involve sampling environmental parameters with
external feedback (Chebotar et al. 2019).

Random Network Distillation We utilize Random Net-
work Distillation (RND) in order to incentive curiosity-230

driven exploration in the training process (Burda et al. 2018).
In particular, we aim to spur investigation of different strate-
gies of battery utilization, as it is through these strategies
that cost efficiencies can be uncovered.

RND augments the exploration process by encouraging235

the RL agent to seek out novel states and scenarios. It op-
erates by maintaining two neural networks, a target and a
predictor, and measuring the deviation between the fixed tar-
get and the variable predictor to determine the novelty of
new states. This curiosity-driven exploration not only aids in240

learning a more robust and adaptive control policy but also
significantly reduces the need for extensive and expensive
real-world data collection.

3 Microgrids and Uncertainty
Our microgrid environments are built atop pymgrid, an245

open-source simulator for tertiary control (Henri et al.
2020). pymgrid ships with a built-in set of 25 microgrids
scenarios for algorithmic testing and benchmarking. In our
work, we present a deep-dive on one of these scenarios
and benchmarks on ten additinal scenarios. In addition, we250

build upon the original simulator to build a fully modular
and customizable simulator, able to handle a large variety

Grid Genset nact

Scenarios

0, 4, 6 Strong No 2
1, 8, 9 Weak Yes 4

2, 3, 5, 7 No Yes 3
10 Strong Yes 4

Table 1: Architectures of the microgrid scenarios. The di-
mension of the action space is denoted by nact.

of applications. To maximize accessibility for future users,
full documentation of the project is available at python-
microgrid.readthedocs.io. 255

3.1 Microgrid Simulation
The state transition discussed below is utilized for simula-
tion of tertiary control. RBC and MPC algorithms interact
with the microgrid directly via this state transition, while RL
agents interact with an abstracted microgrid environment. 260

Microgrid State Transition The microgrid simulator is
a composition of load, PV, macrogrid, genset, and battery
components. Load and PV components serve as an inter-
face for external load and PV information, with load compo-
nents demanding energy and PV components supplying en- 265

ergy from the microgrid each hour based on their underlying
timeseries. Macrogrid, genset, and battery components re-
quire user/agent input to determine the quantity of energy to
consume or produce within respective limits on production
or consumption. At each step, the agent provides an action 270

defining the amount of energy for each macrogrid, genset,
and battery component to consume or produce, with gensets
also accepting a boolean value denoting whether the genset
should power on or off:

At =
(
∆B

(t)
charge, D

(t), G(t), I(t)G

)
(1)

where ∆B
(t)
charge denotes the amount the battery is charged 275

or discharged, D(t) denotes the amount to import or export
from the external macrogrid, G(t) denotes genset produc-
tion, and I(t)G denotes the genset status modification. Note
that some microgrids do not contain grids or gensets and
thus omit the respective elements in the action space. 280

Given this control information, the microgrid undergoes
its state transition process. Energy demand from the load
module is determined, followed by the application of agent-
provided controls to macrogrid, genset, and battery compo-
nents. Finally, PV energy is collected to the extent neces- 285

sary to balance energy production and consumption. If PV
production exceeds the amount required to match produc-
tion and consumption, it can be curtailed as necessary with
any remaining excess production garbage-collected as en-
ergy overgeneration. If PV production is insufficient to allow 290

energy equilibrium, the excess becomes loss load. Batteries
transition via the linear transition function

B(t+1) = B(t) + ηBcharge −
1

η
Bdischarge (2)



where B(t) is the current battery charge, η ∈ (0, 1] is the
battery efficiency, and Bcharge and Bdischarge are charge/dis-
charge amounts respectively. For our purposes, charging and295

discharging are mutually exclusive and one of Bcharge and
Bdischarge is zero at every transition.

At the conclusion of this process, successor state informa-
tion consisting of details on the status of microgrid compo-
nents is collected and returned to the agent. In practice, we300

include the net load (load less PV production), battery state
of charge, and forecasted grid prices in the state space:

St =
(
NL(t), B

(t)
SOC, C

(t)
D0

, C
(t)
Dt+1

, ..., C
(t)
Dt+H−1

)
(3)

where NL(t) is the net load, B(t)
SOC = B(t)

Bcapacity
is the battery

state of charge, C(t)
D0

is the current grid import price, C(t)
Dt+i

is the grid import price forecast i hours ahead at step t, and305

the forecast horizon H defines the number of steps to look
ahead. We vary the number of grid import price elements
in the forecast from zero (H = 0), which includes neither
the current grid import price nor any forecasts, to 24 (H =
24), which includes the current import price and 23 steps of310

forecasting.
The reward Rt is computed and returned as the negative

of the cost Ct of deploying all microgrid modules added to
any penalties induced by overgeneration or loss load:

Ct = CB

∣∣∣∆B
(t)
charge

∣∣∣+ C
(t)
D0

·DI(t) + CG ·G(t)

+ CLL · LL(t) + CO ·O(t) (4)
Rt =− Ct (5)

where DI(t) = D(t) · 1D(t)>0 is the grid import amount,315

LL(t) is the loss load, O(t) is the overgeneration, and CB ,
C

(t)
D0

, CG, CLL and CO are battery usage, grid import price
at time t, genset production, loss load and overgeneration
costs, respectively. Note that grid exporting is ignored as
all microgrids under consideration have macrogrid export320

prices of zero. See Section 1 of the Supplementary Mate-
rials for additional details on the microgrid state transition.

Naive Environment The most straightforward way to de-
fine the action space for an RL agent is to utilize the action
space A consisting of actions as defined in (1). While intu-325

itive, this formulation does not allow for RL algorithms to
discover cost-competitive polices as detailed in Section 5.

Net Load Environment While the overall objective of mi-
crogrid control is to meet load demand while minimizing
costs, this objective can be reduced, without loss of gen-330

erality, to producing just enough to meet the step-wise net
load NL(t). This is due to the fact that PV production has
no marginal cost, which implies that optimal policies should
request maximal PV consumption at every step.

We thus reformulate our action space to define actions335

relative to the net load. Specifically, the action space A =
[−1, 1]nact consists of vectors containing elements ai such
that the respective energy request is aiNL(t), where NL(t)

is the net load at that step. Any genset status value updates
remain unchanged. Specifically, our action space consists of340

actions At = (a0, ..., anact) such that the microgrid receives
the vector

At = NL(t)
(
aB , aD, aG, NL(t)−1

aIG

)⊤
(6)

as controls corresponding to the same values in (1). As in
(1), macrogrid or genset components may be omitted de-
pending on the microgrid architecture. 345

Slack Environment We further reformulate the action
space by observing that effective policies must balance the
energy production and consumption of macrogrid, genset
and battery components with the net load, as failing to do
so will lead to loss load or overgeneration penalties. These 350

penalties can overwhelm second-order signals such as bal-
ancing the various controllable components for efficiency.
We can alleviate the agent of the task of meeting the energy
balance by treating one controllable component (the genset
or grid) as a slack component. We remove it from the ac- 355

tion space and have it satisfy any remaining energy excess
or shortfall implicitly after processing the remaining con-
trollable components, whose action are defined as above in
(6). The energy request for the slack component is defined
automatically as 360

Aslack
t = NL(t)

(
1−

∑
ai∈A

aenergy
i

)
(7)

where aenergy
i denotes net-load relative energy requests for

the remaining components as in (6).
Table 1 overviews the microgrid scenarios we consider in

this work. We present an in-depth analysis of scenario zero
as well as benchmarks of our algorithm’s performance on 365

ten additional scenarios.

3.2 Reward scaling
Minimization of the cost (4) over the course of a particular
time period is our overall objective, and it is intuitive to de-
fine a reward signal as the negative of the cost at each step as 370

in (5). This definition, however, elides the fact that much of
the magnitude of this reward signal is gratuitous in the slack
environment formuation. In this environment, the loss load
and overgeneration costs are uniformly zero and the cost of
the action At =

−→
0 (requesting nothing from controllable 375

components) can be treated as a baseline as in this situation
energy balance is met by the slack component only. As a re-
sult, we shape the reward by adding this baseline (positive)
cost to the original (negative) reward:

R′
t = Rt + C

(t)
slack max(NL(t), 0) (8)

where C
(t)
slack is the grid import price or genset production 380

cost if the slack module is a grid or genset, respectively. This
shaped reward is positive if the cost of running the microgrid
is less than utilizing only the slack component and negative
otherwise.

3.3 Sources of uncertainty 385

As detailed above, each microgrid contains a load, a source
of PV, and a battery. Each of these are potential sources



of uncertainty in the underlying models for MPC: the first
two through forecast inaccuracy, and the third through di-
vergence in battery model and true battery behavior. Macro-390

grids are a further source of uncertainty in microgrids that
contain them through stochasticity in forecasts of their im-
port prices.

In this work, we consider the effects of three types of bat-
tery models, all based on the transition model (2): (1) an395

ideal model, whose transitions model the behavior in (2) ex-
actly, (2) a biased model, whose transitions are based on a
battery efficiency η∗ that diverges from the true battery effi-
ciency, (3) a decay model, whose transitions are based on a
battery whose efficiency is constant in time, but whose true400

efficiency decays gradually: ηt+1 = (1− γ)ηt for some de-
cay rate γ ≪ 1, and (4) a cycle decay model, whose transi-
tions are based on a battery whose efficiency is constant in
time, but whose true efficiency decays gradually as a func-
tion of the number of cycles: ηt = η0 · (1− γ)ncycles for some405

decay rate γ ≪ 1, where ncycles is the number of battery
cycles the battery has undergone.

We simulate timeseries forecast uncertainty by adding
noise to true future values, as follows. Suppose the mi-
crogrid is currently at time T , and the forecast horizon is410

H , such that we consider the MPC problem or RL state
over the timesteps {T, T + 1, ...T + H}. Let the true fu-
ture values over this horizon be vtrue

TH
∈ RH . Then the sim-

ulated forecasted values are vsim
TH

= vtrue
TH

+ εTH
, where

εTHi
∼ N (0, |µ| log(1 + i)), i.e. the noise i steps in the415

future is Gaussian with mean zero and standard deviation
|µ| log(1 + i), with µ as the mean of the underlying time-
series. This simulated noise is added to load, PV, and macro-
grid timeseries, as applicable in a given microgrid. An exam-
ple of this noisy forecasting for the load is plotted in Supple-420

mentary Fig. S1.

4 Methods
4.1 RBC Formulation
We define an RBC control algorithm for tertiary control as
the greedy deployment of microgrid components as follows.425

We meet the net load by utilizing the microgrid’s compo-
nents consecutively from lowest to highest marginal cost un-
til energy production and consumption is balanced, resulting
in energy production in the components if NL(t) is positive
and consumption if negative. This RBC method is greedy as430

no future planning is done and conservation of energy for
future timesteps is not considered in deployment, and the
resultant algorithm is a decision tree dependent on the net
load and the available components. An example of this tree
for Scenario zero is available in Supplementary Fig. S2.435

4.2 MPC Formulation
Our formulation of MPC is based on the receding horizon
control implementation in (Borrelli, Bemporad, and Morari
2017). Define ut and xt as the controls for controllable com-
ponents and the state at time t, respectively, analogous to440

actions and states in the RL formulation. We can write the

step-wise cost (4) as a linear combination of ut and xt:

Ct(x,u) = c⊤x,tx+ c⊤u,tu (9)

where cx,t and cu,t are marginal cost vectors for the state
and control, respectively. Controls at time T are selected as
the minimizer of the cost over the forecast horizon H: 445

u∗
T = argmin

uT ...uT+H

T+H∑
t=T

C(xt,ut) (10)

subject to

Axt +But ≤ α,

Mxt +Nut = β ∀t ∈ {T, ..., T +H}, (11)

a set of constraints on the various controls and state com-
ponents. The optimal controls at step T are then applied to
the system, the state transition occurs, and the optimization
problem is reset and solved over [T +1, T +H+1]. For full 450

details on the cost function and constraints, see the supple-
mentary materials and the accompanying code base.

4.3 RL: Policy gradient methods
Policy Gradient methods find solutions to continuous-action
MDPs by modeling and optimizing the policy directly (Sut- 455

ton and Barto 2018). The objective is to maximize perfor-
mance of a policy π(a|s, θ) with respect to a performance
measure J(θ) by taking gradient steps with respect to the
policy parameter θ.

PPO Proximal Policy Optimization (PPO) (Schulman 460

et al. 2017) is an on-policy algorithm that utilizes an objec-
tive intended to ensure that the policy changes from gradient
steps are relatively small. The objective J(θ)

Et[min(rt(θ)At, clip(rt(θ), 1− ϵ, 1 + ϵ)At)], (12)

where rt(θ) =
πθ(at|st)
πθold(at|st) and At is the advantage function.

PPO removes much of the variance in traditional policy gra- 465

dient algorithms.

DDPG Deep Deterministic Policy Gradients (DDPG)
(Lillicrap et al. 2019) is an off-policy policy gradient method
with an objective function based on Q-learning:

Et

[(
Q(st, at; θQ)− (rt + γQ(st+1, µ(st+1; θµ); θQ))

)2]
where Q(·, · θQ) is the Q-function and µ(·, θµ) is the policy 470

parameterized by θQ and θµ, respectively, and st, at, rt, and
γ denote states, actions, rewards, and the discount factor,
respectively.

DR and RND We implement DR by adding Gaussian
noise to the underlying timeseries of a given microgrid at 475

the beginning of each episode. Upon commencement of each
episode, new timeseries are generated as applicable for load,
PV, and macrogrids by adding noise to the ground truth time-
series; the training process then proceeds in a standard fash-
ion. 480

We implement RND by augmenting rewards collected at
the end of each episode with an intrinsic reward. RND con-
sists of two randomly initialized fully-connected neural nets,



Baseline Forecast Unc. (10%) Biased Batt. (Over) Biased Batt. (Under) Decay Batt.

H RBC MPC RL MPC RL MPC RL MPC RL MPC RL

7 384 361 355 359 360 373 359 361 358 408 375
24 384 352 356 352 365 364 358 352 358 401 372

Table 2: Performance of algorithms under uncertainty with forecast horizons of seven and 24 as measured by cost on the
evaluation set. Baseline refers to perfect modeling and forecasting, forecast uncertainty refers to inaccurate forecasting (10%
error), biased battery refers to the situation when the recorded battery efficiency over or underestimates the true efficiency, and
decay battery refers to when the battery capacity decays over time. Values are in thousands of dollars.

a target and a predictor, that take in environment observa-
tions as input and return an 128-dimensional encoding. The485

target net is fixed while the predictor net is trained to pre-
dict the output of the target; in this way, observations that
result in large differences in target and predictor encodings
are novel while small differences suggest these observations
have been encountered previously. The mean squared dif-490

ference in encodings is used as an intrinsic reward and the
weighted sum of intrinsic and standardized extrinsic rewards
are used as the reward signal to the algorithm.

10
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Figure 1: Comparison of environment formulations and RL
algorithms. Environments are based on a 24-step forecast
horizon. The relative cost is one less than the cost over the
test set relative to using perfect MPC.

5 Results
In this section we present a relative comparison of algo- 495

rithms. All evaluation is done on the final four months of
data, consisting of 2920 hourly steps. RL algorithm train-
ing is done on 30-day episodes by randomly selecting time
intervals of 720 steps from the first eight months of data.

5.1 Scenario zero 500

Scenario zero is a microgrid with a strong grid and no
genset. With a perfect 23 step forecast and perfect battery
model, RBC and MPC obtain test set costs of $383,667
and $351,555, respectively, making RBC performance 9.1%
worse than MPC performance. We refer to this MPC algo- 505

rithm, with a perfect 23 step forecast and a perfect battery
model, as the perfect MPC, an algorithm that is effectively
optimal given its environmental knowledge.

As mentioned in Section 3.1, we include varying amounts
of grid import price data. It is through this information that 510

both MPC and RL plan and from which cost efficiencies
over RBC are achieved. Specifically, cost savings are real-
ized when battery state of charge is conserved during times
when import prices are low to then later discharge when im-
port prices are high. 515

5.2 On-policy and off-policy learning

We find that off-policy learning via DDPG struggles to learn
more than a simple policy, meeting but not exceeding RBC’s
performance with every combination of hyperparameters
(Fig. 1). DDPG algorithms are sample efficient and quickly 520

converge to the RBC cost but fail to surpass it. On-policy
learning with PPO, on the other hand, is able to surpass
RBC costs given the correct environment context. Specifi-
cally, PPO in slack environments is able to outperform RBC
with baseline reward shaping increasing the rate of conver- 525

gence and making the ultimate policy more effective.
The effectiveness of PPO in the slack environment holds

over a wide array of hyperparameters and forecast hori-
zons, with many converging to roughly the same cost of
$358, 996± $900 (Supplementary Fig. S5). There are, how- 530

ever, some small outliers on the positive end: with forecast
horizons of seven and 24, we are able to achieve costs of
$355, 344 and $355, 803, with RND and domain randomiza-
tion. These values are 1.1% and 1.2% worse than the perfect
MPC model, respectively. 535
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Figure 2: Algorithm performance under increasing forecast
uncertainty. y-axis denotes the cost on the evaluation set
with the given algorithm less the cost of perfect MPC.

5.3 Planning
With a forecast horizon of seven, RL outperforms MPC
in over half of all hyperparameter combinations. With this
forecast horizon, MPC obtains a cost of $361, 362 on the
test set while the average PPO policy achieves a cost of540

$360, 082±2947. DR and RND aid RL’s performance: PPO
models utilizing intrinsic reward weights of 0.01 or 0.1 and
DR noise of 0.01 or 0.1 achieve costs of $358, 514± 368.

It is clear that RL is able to leverage future forecast in-
formation to make efficient decisions in the present. The545

convergence, and to a certain extent performance, of RL in-
creases steadily with increasing forecast horizon (Supple-
mentary Fig. S5). The presence of RND mitages poor per-
formance with short forecast horizons: with H = 1, higher
intrinsic reward weights lead to sufficient exploration for the550

agent to exceed RBC performance by forcing the agent to
explore different battery states and thus discover the value of
conserving battery in certain scenarios. On the other hand,
with a forecast horizon of 24, the highest intrinsic reward
weights lead the agent to over-explore and performance suf-555

fers as a result.
Furthermore, environments with a forecast horizon of

zero (no grid pricing information), converge, as DDPG al-
gorithms do, to the RBC cost, with test set costs averaging
$384, 304 ± 157. This cost is strikingly close to the RBC560

cost: the difference is less than 0.17%. In fact, the RL pol-
icy converges almost identically to the RBC policy in this
case (Supplementary Fig. S3). Both RBC and RL with a
zero-length forecast horizon can be seen to charge the bat-
tery very rarely, with the battery SOC rarely exceeding four565

tenths of the capacity and spending most timesteps at the
minimum. MPC and RL with longer forecast horizons, on
the other hand, are more aggressive in their battery usage
and the opposite pattern occurs: significant amounts of time
are spent with the battery mostly charge, interspersed with570

periods of aggressive charging and discharging when the net
load is high (Supplementary Fig. S3).

5.4 State Space Importance
We perform a permutation importance on the observation
space to evaluate the extent of the RL agents’ planning.575

Specifically, we evaluate the policy on the test set with one
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Figure 3: Performance with biased battery model. x-axis de-
notes efficiency known to MPC; true efficiency is 0.9 in all
cases and is denoted by the dotted green line.

element of each observation replaced with a randomly se-
lected number throughout the episode. By averaging over
multiple episodes, we are able to discern decreases in per-
formance due to this shuffling. Greater decreases in perfor- 580

mance correspond to the RL agent inferring more from that
component of the observation space.

The net load and current grid price are the most valuable
features, corresponding to importances of over $12, 000 with
forecast horizons of both seven and 24 (Supplementary Fig. 585

S4). The battery state of charge is important to the H = 24
agent but not the H = 7 agent, suggesting that this infor-
mation is only taken into account on longer time-horizons
when planning for a farther future is feasible. Agents in both
H = 7 and H = 24 environments give significant weight 590

to a grid import price forecast in the far future: six and 18
steps ahead, respectively. This suggests that the models in-
gest future price information and utilize it to make battery
deployment decisions.

5.5 Performance Under Uncertainty 595

As forecasting and modeling of real-world microgrids is im-
perfect, it is crucial to evaluate algorithm performance in the
context of inexact forecasts and models that better mimic
real-world scenarios. We showed that RL can outperform
MPC with a forecast horizon of seven steps even if both are 600

equipped with a perfect forecast in Section 5.3; in this sec-
tion, we should that RL outperforms MPC in the context of
inaccurate battery models but not imperfect forecasts.

MPC’s continued superiority over RL in the latter setting
is due to the fact that MPC does not suffer significantly from 605

imperfect forecasting in our simulated conditions (Fig. 2).
Despite this, RL remains able to outperform RBC consis-
tently with imperfect forecasts. Unlike our previous exper-
iments, we observe that overtraining becomes a factor with
larger forecast uncertainties in RL after roughly 60 epochs, 610

suggesting that RL begins to infer from forecast noise.
MPC’s performance does not extend to inaccurate bat-

tery models, and in this context RL is the best-performing
algorithm with both biased and decay battery models. In
the case of biased models, RL outperforms MPC when the 615

known efficiency is three or more percentage points higher
(0.93 vs 0.9) or 23 percentage points lower than the true effi-
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cays over time. Decay Battery and DecayCycle Battery refer
to the battery models as described in Section 3.3 and use de-
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ciency of 0.9 (Fig. 3). While MPC performance suffers if the
known efficiency deviates in both directions from the true
efficiency, this effect is not symmetric and known efficien-620

cies lower than the true efficiency do not lessen performance
to the same extent: overestimating efficiency is much more
harmful than underestimating it in MPC.

RL continues to outperform MPC with batteries that de-
cay temporally (Fig. 4). MPC struggles in this case, with625

longer forecast horizons leading to worse MPC performance
with the cycle decay battery; this is consistent across decay
rates. RL outperforms MPC in both battery decay scenarios
and outperforms RBC in the decay battery scenario. With
the decay cycle battery, RL is able to replicate RBC perfor-630

mance but does not exceed it.

5.6 Generalization

Our approach generalizes to many other microgrid scenar-
ios, as can be seen in Table 3, and significantly outperforms
RBC on microgrids two, five, and seven. On microgrids four635

and six, RL and RBC performance is effectively equivalent,
while on the remaining micorgrids RL struggles more. Addi-
tional specialization on these microgrids could improve per-
formance, with different hyperparameter combinations po-
tentially allowing for improved performance.640

Cross-referencing Table 1, it is apparent that the scenar-
ios where RL performs the most poorly are those with both
macrogrids and gensets. With that in mind, we further inves-
tigate the efficacy of our algorithms in the presence of both
macrogrid and genset in scenario ten. Specifically, we con-645

sider the case where we allow the algorithm to control both
the output and the status (on or off) of the genset along with
the case where we allow the genset’s output to be controlled
while its status is always on as well as the case where the
genset is off. We find that forcing the genset on is ineffec-650

tive and it is clear than optimal policies here do not use the
genset perpetually, if at all (Supplementary Fig. S6). In ad-
dition, random network distillation is ineffective in this sce-
nario, with PPO in the presence of RND underperforming
PPO without RND.655

Scenario 1 2 3 4 5

RL 1.99 1.05 1.03 1.02 1.03
RBC 1.00 16.60 16.65 1.01 16.65

Scenario 6 7 8 9 10

RL 1.01 1.07 3.38 1.36 3.86
RBC 1.00 16.60 1.12 1.02 1.15

Table 3: Performance on the evaluation set on nine addi-
tional microgrid scenarios as measured by cost relative to
MPC with perfect 24-step forecast. MPC costs with perfect
forecast in each scenario are scaled to 1.00.

6 Discussion
We present an evaluation of rule-based control (RBC),
model predictive control (MPC), and reinforcement learn-
ing (RL) on a tertiary control microgrid simulator. We de-
vise a microgrid environment that abstracts away high-level 660

load balancing requirements and allows algorithms to opti-
mize for efficiency and show that RL agents are effective
and able to outperform RBC in a variety of scenarios. We
utilize random network distillation and domain randomiza-
tion to promote exploration and generalization and find that 665

both aid performance. We train RL agents that achieve costs
of $355, 344 and $355, 803 with forecast horizons of seven
and 24, respectively, 1.1% and 1.2% worse than the perfect
MPC model performance of $351, 555 with a forecast hori-
zon of 24, and 1.7% and 1.5% better than MPC with a fore- 670

cast horizon of seven, which obtains a cost of $361, 362.
We show that MPC persists as the most powerful algo-

rithm when models are accurate and forecast uncertainty is
low and that MPC is relatively robust to forecast uncertainty.
As model uncertainty increases, we show that RL prevails 675

as the most effective algorithm. This is true with both bi-
ased battery models that have an inaccurate but constant effi-
ciency, and battery models that have a true underlying model
with temporally decaying efficiences. In scenarios with no
forecasting information, we show that RL converges to the 680

RBC policy.
This work serves as a building block for building effective

control algorithms for electrical microgrids in the context of
uncertainty. These approaches are crucial in addressing real-
world energy management challenges, particularly in devel- 685

oping methods to improve climate resilience.
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R.; Jiménez-Estévez, G. A.; and Hatziargyriou, N. D. 2014. 775

Trends in Microgrid Control. IEEE Transactions on Smart
Grid, 5(4): 1905–1919. Conference Name: IEEE Transac-
tions on Smart Grid.
Qin, S. J.; and Badgwell, T. A. 2003. A survey of indus-
trial model predictive control technology. Control Engineering 780

Practice, 11(7): 733–764.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal Policy Optimization Algorithms.
arXiv:1707.06347 [cs]. ArXiv: 1707.06347.
Schwenzer, M.; Ay, M.; Bergs, T.; and Abel, D. 2021. Re- 785

view on model predictive control: an engineering perspec-
tive. The International Journal of Advanced Manufacturing Tech-
nology, 117(5): 1327–1349.
Shezan, S. A.; Hasan, K. N.; Rahman, A.; Datta, M.; and
Datta, U. 2021. Selection of Appropriate Dispatch Strate- 790

gies for Effective Planning and Operation of a Microgrid.
Energies, 14(21): 7217. Number: 21 Publisher: Multidisci-
plinary Digital Publishing Institute.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learning:
an introduction. Adaptive computation and machine learning. 795

Cambridge, Mass: MIT Press. ISBN 978-0-262-19398-6.
Tobin, J.; Fong, R.; Ray, A.; Schneider, J.; Zaremba, W.; and
Abbeel, P. 2017. Domain Randomization for Transferring
Deep Neural Networks from Simulation to the Real World.
arXiv:1703.06907 [cs]. ArXiv: 1703.06907. 800

Zeng, P.; Li, H.; He, H.; and Li, S. 2019. Dynamic Energy
Management of a Microgrid Using Approximate Dynamic
Programming and Deep Recurrent Neural Network Learn-
ing. IEEE Transactions on Smart Grid, 10(4): 4435–4445.
Zhang, Y.; Meng, F.; Wang, R.; Zhu, W.; and Zeng, X.-J. 805

2018. A stochastic MPC based approach to integrated en-
ergy management in microgrids. Sustainable Cities and Soci-
ety, 41: 349–362.


