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Abstract

Reinforcement Learning (RL) algorithms have had
tremendous success in simulated domains. These
algorithms, however, often cannot be directly ap-
plied to physical systems, especially in cases where
there are constraints to satisfy (e.g. to ensure
safety or limit resource consumption). In standard
RL, the agent is incentivized to explore any pol-
icy with the sole goal of maximizing reward; in the
real world, however, ensuring satisfaction of cer-
tain constraints in the process is also necessary and
essential. In this article, we overview existing ap-
proaches addressing constraints in model-free re-
inforcement learning. We model the problem of
learning with constraints as a Constrained Markov
Decision Process and consider two main types of
constraints: cumulative and instantaneous. We
summarize existing approaches and discuss their
pros and cons. To evaluate policy performance
under constraints, we introduce a set of standard
benchmarks and metrics. We also summarize lim-
itations of current methods and present open ques-
tions for future research.

1 Introduction

Deep reinforcement learning (RL) has demonstrated excel-
lent success in a variety of domains, including games [Vinyals
et al., 2019], robotic control [Levine et al., 2016], and rec-
ommendation systems [Shani et al., 2005], etc. In typical
RL settings like these, the fundamental principle of RL — in
which the agent aims to maximize long-term reward by trial
and error — incentives the agent to explore the entire state
space and experiment with all possible actions in unknown
environments.

Many real-world applications, however, require the agent
to consider constraints that may curtail the agent’s freedom to
explore [Dulac-Arnold er al., 2019]; representative examples
include safe exploration [Garcia and Ferndndez, 2015; Ray
et al., 2019] and resource allocation [Bhatia et al., 2019;
Liu et al., 2020al, which generally employ the constrained
RL framework as their main formalism.

Physical examples of this abound. For instance, consider
a situation where a robot is asked to accomplish tasks with a
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limited amount of energy or a finite amount of time — robot
behavior is restricted by the total amount of energy avail-
able and by the time taken. Another typical example is con-
straints on the probability of resource overutilization. As-
sume a group of people is sharing resources and everyone
is assigned a certain portion; people in the group are allowed
to overuse the resources which are more than he/she is as-
signed but with limited times (e.g. AT&T family plan). Fur-
ther examples exist in autonomous and robotic research: an
autonomous car is not allowed to take any actions that could
cause an accident while optimizing its driving policy; and the
goal of a drone is to not only maximize flying speed and dis-
tance but also avoid being damaged while doing so.

In this context, the Constrained Markov Decision Process
(CMDP) becomes an important model for constrained se-
quential decision-making problems. In a CMDP, the objec-
tive is to maximize long-term reward while keeping certain
costs under their respective constraints. In this paper, we di-
vide constraints into two general types relevant to the CMDP
problem: cumulative and instantaneous, defined as follows.

* Cumulative constraints require the sum or mean of one
constraint variable from the beginning to the current
time step to be within a certain limit (e.g., total energy
consumption, resource overutilization), as in Eq. (6).

* Instantaneous constraints are constraints that the chosen
action needs to satisfy in each step (e.g., accident and
damage avoidance), formulated in Eq. (7).

In this paper, we discuss various approaches to addressing
the CMDP problem. The CMDP problem is more challenging
than standard RL problems, which are able to employ solu-
tions that directly maximize the reward, as value-based [Mnih
et al., 2013] or policy gradient [Sutton et al., 1999] meth-
ods do. Applying these methods directly to CMDP problems
would result in policies that do not respect constraints in gen-
eral. There are three key facets of this challenge:

* Policy learning becomes a constrained optimization
problem which makes the optimization more complex.

 Constraints are diverse, making the problem difficult to
formulate.

e The agent will inevitably violate the constraints as
model-free RL lacks a priori environment knowledge,
necessitating trial and error.
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The rest of the paper proceeds as follows. In Section 2, we
introduce CMDPs as well as the formulation of each type of
constraints. In Sections 3 and 4, we discuss approaches to
solving CMDP problems with cumulative and instantaneous
constraints, respectively. In Section 5, we suggest bench-
marks and metrics for policy evaluation. Finally, we discuss
the limitations of current methods and avenues desiring future
attention in Section 6 and conclude in Section 7.

2 Problem formulation

2.1 Constrained Markov Decision Process

A Markov Decision Process (MDP) is defined as a tuple
(S, A, R, P, pu,~) [Sutton and Barto, 2018], where S is the
set of states, A is the set of actions, R : S x A x S — R s
the reward function, P : § x A x S ~— [0,1] is the transi-
tion probability function , & : S +— [0, 1] is the initial state
distribution and + is the discount factor for future reward. A
policy m : S — P(A) is a mapping from states to a proba-
bility distribution over actions and 7 (a¢|s;) is the probability
of taking action a under state s in time step t. We denote a
policy 7 as my to emphasize its dependence on a parameter
0 . The standard goal of an MDP is to learn a policy 7y that
maximizes the discounted cumulative reward:

max J5' = Eror, [; V' R(st,ar,se41)], (D)
where 7 = (s, ag, $1, a1...) denotes a trajectory, and 7 ~ 7y
denotes trajectories sampled from the policy 7g.

A Constrained Markov Decision Process (CMDP) — de-
fined as a tuple (S, A, R, C', P, u,y) — extends the defini-
tion of the traditional MDP [Altman, 1999] by introduc-
ing a set of cost functions C'. The cost functions C; € C,
C; : S x Ax S +— R are constrained in some way, depending
on the type of constraint (Taxonomy 1).

We call an action a feasible if a € A satisfies all of its
necessary constraints. In a CMDP, the objective is to select a
policy 7y that maximizes the long-term reward while satisfy-
ing all constraints. Formally, we have

max J3?,
oo @)

s.t. ay 1s feasible.

2.2 Cumulative Constraints

Cumulative constraints require the sum or mean of a given
cost signal to be within a certain limit, where the sum or
mean are computed from the beginning to the current time,
such as total revenue and network throughput. We consider
two different kinds of cumulative constraints: those on the ex-
pectation of some cost signal and those on the probability of
a cost signal. The first group includes discounted cumulative
constraints and mean valued constraints [Altman, 1999].
A discounted cumulative constraint is of the form

oo
t
TG =Brmy D V' Cilstyar,s041)] < e (3)
t=0
where 7 = (sg,ag, $1,a1...) is a trajectory, 7 ~ 7y, and ¢;
is the limit for each cumulative constraint. These constraints
satisfy the Recursive Bellman Equation.
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Taxonomy 1: Constraint categories.

A mean valued constraint is of the form

T-1

- 1
J& = Ermry [ Ci(st,ar, se41)] < €, “)
t=0

T

where T is the total number of time steps in each trajectory.

The second group concerns the probability that the cumu-
lative costs violate a constraint [Geibel, 2006]. Probabilistic
constraints are of the form

TG = P> Cilst,ar, s001) > n) < €. (5)

t

where 1 € R is the cumulative cost threshold for each trajec-
tory and ¢; € (0,1) is the probability limit. Intuitively, these
constraints require that the probability of cumulative costs ex-
ceeding 7 be less than ¢;.

In a CMDP equipped with cumulative constraints, the goal
is to find a policy 7y that maximizes the discounted cumula-
tive reward while satisfying these cumulative constraints. We
formulate the cumulative constraint problem as:

o
méax Jg

(6)

s.t. Jgf <€,

2.3 Instantaneous Constraints

Instantaneous constraints are constraints on the actions,
states, or cost functions that selected actions must ensure
the satisfaction of in every step. They can be further di-
vided into explicit and implicit varieties. An explicit con-
straint has a closed-form expression that can be numerically
checked, such as computing or storage capacity. Explicit
constraints can accurately (and relatively easily) be evalu-
ated for each action, for example the constraints are on the
actions themselves [Bhatia er al., 2019]. Such constraints
are usually on available resources in a general sense. An
implicit constraint is a constraint that does not have an ac-
curate closed-form formulation due to the complexity of the
system [Dalal et al., 2018], such as network latency. These
constraints generally concern the outcome of actions; their
unknown dependence on actions necessitates modeling or
learning this dependence using existing data and/or during
exploration. For example, probabilistic instantaneous con-
straints are one kind of implicit constraint: C;(s¢, at, S¢41) =
P(C;i(st,at, s¢41) > 1) < €, where we define a new cost
function C;(s¢, at, St11)-
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We formalize the instantaneous constraint problem as:

max Jp'
0 @)

s.t. Ci(sg, at, st41) < wi,

where w; is the limit for each respective instantaneous con-
straint. These limits can be either a predefined constant or a
function of the current state s; [Henri et al., 2020].

We discuss how to address different kinds of constraints
in the following section; Table 1 summarizes the body of
work that we consider in this article. We compare the meth-
ods along the following dimensions: aspects of performance,
scalability, computational complexity and theoretical support,
and score them according: v',—, and X, in descending order.

3 Cumulative Constraints

3.1 Lagrangian Relaxation

Lagrangian relaxation is the most common approach to ad-
dress cumulative constraints. Initially introduced in [Altman,
19991, this method works for both expected and probabilis-
tic constraints. The general form of Lagrangian relaxation is
to reduce the problem to an unconstrained problem via La-
grange multipliers. These adaptive Lagrange multipliers are
then used to penalize constraint violation:

f\?%%mgxxL(G, Ai) = J5 — Z)\i(Jgj —€), (8
where L is the Lagrangian and \; are the Lagrange multipliers
for each cumulative constraint. The Lagrange multipliers are
then updated in the dual problem to satisfy the constraints.

The Lagrangian relaxation method can achieve high per-
formance, measured by having high long-term rewards and
low cumulative costs [Liu et al., 2020b; Chow et al., 2017].
However, this approach is sensitive to the initialization of
the Lagrange multipliers and the learning rate. The learn-
ing curve variation is large and the policy obtained during
training does not consistently satisfy the constraints, as dis-
cussed in [Achiam et al., 2017; Chow et al., 2019]. Moreover,
the Lagrangian multipliers are solved on a slower time-scale,
which makes it difficult to optimize in practice.

More scalable versions of the Lagrangian-based methods
have been proposed over the years in attempts to accelerate
the learning process [Liang et al., 2018; Chen et al., 2021;
Stooke et al., 2020]. RCPO [Tessler et al., 2018] follows
a two-timescale primal-dual approach, giving guarantees for
convergence to a fixed point. [Bohez et al., 2019] solves the
constrained problem with value-based methods (Q-learning)
instead of policy gradient methods. [Le ef al., 2019] describe
a batch policy algorithm with PAC-style guarantees for cumu-
lative constraints using a similar game-theoretic formulation.

3.2 Constrained Policy Optimization (CPO)

CPO [Achiam et al, 2017] extends the TRPO algo-
rithm [Schulman et al., 2015] to handle expected cumu-
lative constraints. They approximate the complex con-
strained optimization problem with a quadratic constrained
optimization problem which can be solved by using the
Karush—Kuhn-Tucker (KKT) conditions.
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CPO monotonically improves the policy during training
and demonstrates stable empirical performance [Chow et al.,
2019; Liu et al., 2020b]. However, CPO is computationally
expensive as it uses conjugate gradients for approximating the
Fisher Information Matrix, whose approximation error affects
the overall performance. In addition, it requires a backtrack-
ing line-search procedure to determine feasible actions. Both
of these aspects make CPO complicated to implement and
compute. Furthermore, CPO only supports constraints that
satisfy the Recursive Bellman Equation (i.e. discounted sum
constraints); on top of this, it is difficult to accommodate mul-
tiple constraints at once.

3.3 Interior-point Policy Optimization (IPO)

IPO [Liu er al., 2020b] is a first-order constrained optimiza-
tion method for expected cumulative constraints. Inspired by
the interior-point method [Boyd and Vandenberghe, 2004],
IPO augments the objective function (Eq. 6) with logarith-
mic barrier functions as penalty functions to accommodate
the constraints. Intuitively, IPO aims to have a penalty func-
tion such that 1) if a constraint is satisfied, the penalty added
to the reward function is zero, and 2) if the constraint is vio-
lated, the penalty added goes to negative infinity. This moti-
vates the objective function

T 1 T
max Jr 4 Z 5 log(—J¢&! + €) )
3

where t; is a hyperparameter. Note this differs from La-
grangian methods, where the Lagrangian multiplier is much
harder to learn. Furthermore, IPO builds upon PPO [Schul-
man et al., 20171, which inherits the trust-region property of
TRPO, to achieve policy monotonical improvement and bet-
ter guarantee constraint satisfaction during training.

Preliminary results suggest that IPO has desirable proper-
ties, e.g. easy-to-tune hyperparameters and ability of han-
dling multiple constraints, etc. Furthermore, IPO has shown
promising performance in handling multiple and general cu-
mulative constraints. One drawback, however, is that policies
must be feasible upon initialization; solutions to this issue are
proposed in a follow-up application paper [Liu et al., 2020a;
Liu et al., 2021].

3.4 Projection-based Constrained Policy
Optimization (PCPO)

PCPO [Yang er al., 2020] is an iterative method for opti-
mizing policies under expected cumulative constraints. It in-
cludes two stages. The first stage maximizes reward using
TRPO [Schulman er al., 2015]) without constraints, giving
an intermediate policy that may not satisfy the constraints.
The second stage handles the constraints by projecting the
policy back onto the closest feasible policy. This allows the
agent to improve the reward while ensuring constraint satis-
faction simultaneously.

PCPO provides a way to recover from an infeasible set and
presents theoretical performance bounds. Since PCPO uses
TRPO to update the policy with a quadratic approximation
in a fashion similar to CPO, it also inherits the drawbacks of
expensive computation and limited generality that CPO has.
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Constraint Method References Performance Scalability Computation Theorem
Lagrangian [Altman, 1999] v v X X
CPO [Achiam et al., 2017] — v X v
PO [Liu et al., 2020b] v v v —
Cumulative PCPO [Yang er al., 2020] v v X v
Lyapunov [Chow et al., 2019] v v x X
BMC [Satija ef al., 2020] v v v v
State Augmentation [Xu and Mannor, 2011] - X v -
Lagrangian [Bohez et al., 2019] v v X X
Instantaneous Safety layer [Dalal et al., 2018] v v v X
GP [Wachi and Sui, 2020] v v v v
Human [Saunders et al., 2017] v X v X

Table 1: Overview of the representative approaches for Constrained RL.

3.5 Lyapunov-based Approaches

Lyapunov-based approaches [Chow et al., 2018; Chow er al.,
2019] are methods of solving the expected cumulative con-
straint problem by constructing Lyapunov functions, which
are a type of scalar potential functions used to compute the
stability of a system [Drazin and Drazin, 1992]. They provide
an effective way to guarantee cumulative constraint satisfac-
tion via a set of instantaneous, linear constraints. Empirical
results show that Lyapunov-based approaches work well and
are compatible with different RL algorithms; these methods,
however, require solving a Linear Program (LP) at every in-
teraction step to construct the Lyapunov constraints.

3.6 Backward Markov Chain (BMC)

BMC [Satija er al., 2020] proposes converting expected cu-
mulative constraints into instantaneous constraints; the orig-
inal cumulative constraints are satisfied by satisfying the in-
stantaneous constraints. The instantaneous constraints are de-
fined via Backward Value Functions [Morimura et al., 2010],
which act as estimators of the expected cost collected by the
agent so far. Using backward value functions makes the sys-
tem Markovian, which in turn allows the agent to derive ana-
Iytical solutions for instantaneous constraints. The optimiza-
tion problem in this method can be easily solved with little
approximation.

3.7 State Augmentation

Optimizing CMDPs with probabilistic constraints is an NP-
hard problem [Xu and Mannor, 2011]. Nevertheless, [Xu
and Mannor, 2011] propose a pseudo-polynomial algorithm
that converts the probabilistic constraints to cumulative con-
straints. In their method, a new CMDP is constructed by do-
ing state augmentation. Given a policy 7 of the new CMDP,
the expected values of the cumulative reward and cost in the
new CMDP equal the expected cumulative reward and proba-
bility of cumulative cost meets the target in the original MDP,
respectively. While the method works well for small-scale
and finite CMDPs, it does not scale well.

4 Instantaneous Constraints

4.1 Lagrangian Relaxation

Lagrangian relaxation methods work for instantaneous con-
straints as well. In these methods [Bohez et al, 2019;
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Bhatia er al., 2019], the reward is augmented with the sum
of the constraint penalty weighted by the Lagrange multipli-
ers in each step. This new reward is defined as

Ri(st,ar,s141) — »_ Mi(Ci(se, ar, se01) —wi),  (10)

This method solves the instantaneous constraint problem to
some degree. However, it can be difficult to optimize in prac-
tice as the optimization need to happen in each RL step. In
addition, it is inevitable that constraints will be violated in the
training process.

4.2 Safety Layer

To satisfy instantaneous constraints, a natural approach is to
correct action at each step by projecting actions onto a feasi-
ble space. This can be done by introducing a so-called safety
layer to the end of the policy network that performs this pro-
jection. In a given state, the unconstrained policy outputs an
action and then passes it to the safety layer, which projects
the action to the nearest feasible action. The role of the safety
layer is to solve

.1, 2
min 7 [Ja; — aq|
al 2 (11)

! /
s.t. Ci(sg,ay, 8141) < w;

where a; is the new feasible action, a; is the infeasible prim-
itive policy output, C;(s¢, ay, s;, 1) is the instantaneous con-
straint signal under new action a’ given state s at time ¢,
and w; is the predefined constraint. A representative ap-
plication is to restrict motions of robot arm [Pham et al.,
2018]. The safety layer idea can apply to both explicit and
implicit constraints. One challenge is that for implicit in-
stantaneous constraints the function C;(-) may be unknown.
To address this problem, one can use another neural network
to learn the constraint function C;(-) [Dalal et al., 2018].
If the constraints are of linear nature [Dalal et al, 2018;
Chow et al., 2019] then the Euclidean distance projection can
be approximated by a linear projection.

Global Sum Constraints [Bhatia er al., 2019] are a spe-
cial case of explicit instantaneous constraints that can be sat-
isfied with a softmax safety layer. They appear frequently
in resource allocation scenarios [Bhatia et al., 2019]. As-
suming that an action is a vector with k entries, denoted
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as a = [ay,as,...,a;]T, and we have the specific explicit
instantaneous constraint ), ar = 1. A softmax safety
layer is added right after the output layer of the policy net-
work 7y to project the arbitrary action a to a feasible action
AN PV 1T
a =la},ah,...,a,]":
e
= -G (12)
Z,_ e%j
j=1

One thing to note is that when the policy is parameterized
with a Gaussian distribution — a standard choice in Deep RL
to handle continuous environments — the action projection can
lead to a biased gradient [Chou ez al., 2017; Fujita and Maeda,
2018] in policy gradient algorithms.

4.3 Gaussian Processes

Since implicit instantaneous constraints are unknown in the
model-free environment, some works attempt to model them
as Gaussian Processes (GPs) [Turchetta et al., 2016; Wachi
et al., 2018; Wachi and Sui, 2020] and then use these mod-
els to predict the constraint values of neighboring states. This
method requires two main assumptions: 1) the agent starts in
afeasible initial state set and 2) regularity of the instantaneous
cost, so that similar states have similar cost values. By mod-
eling unknown costs with GPs, an agent partitions the state
space into feasible, uncertain, and infeasible regions. The
algorithm optimizes the cumulative reward by exploring the
feasible regions and the goal is to identify the largest possible
feasible regions.

4.4 Human in The Loop

Instantaneous constraints require constraint satisfaction at
each step. However, all of the above methods cannot guar-
antee that they achieve zero violation. This is especially true
for implicit instantaneous constraints, where visiting infeasi-
ble regions is inevitable as the cost value is unknown to the
agent.

For model-free reinforcement learning, having a human “in
the loop” who is ready to intervene is currently the only way
to prevent all infeasible actions. In [Saunders er al., 2017], a
human constantly watches the interface between the RL agent
and environment and blocks any infeasible action before it
happens. Then a scheme uses a supervised imitation learner
to imitate the human intervened policy. Although incorporat-
ing learning with human intervention can significantly reduce
constraint violation, it is difficult to scale to complex environ-
ments because the human time-cost would be prohibitive.

5 Evaluation
5.1 Benchmarks

In order to evaluate the efficacy of various constrained RL
approaches, a set of standard benchmarks and metrics is nec-
essary for comparison. In this section, we outline popular
environments that provide test cases for benchmarking algo-
rithms that solve the constrained RL. All the environments are
configurable so that the user can design their own depending
on the type of constraints they hope to study.
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Traditional Mujoco Environments

The tasks presented here, Circle and Gather [Achiam et al.,
2017] are chosen based on their intuitive definition and their
inclusion of a clear constraint component. These tasks can be
trained on agents of various complexity: a point-mass (S C
R?, A C R?), an ’ant’ (a quadruped robot, S C R32, A C
R?®), and a humanoid (S € R192, A C R!9). Each agent-task
combination is available with the tasks outlined below with
the exception of Humanoid-Gather:

Circle: In the circle task, agents are rewarded for running
in a wide circle of predefined radius, yet constrained to stay
within a safe region smaller than the radius of the circle.

Gather: In the gather task, agents are rewarded for col-
lecting apples while being constrained to avoid bombs. Each
apple collected results in a reward while collecting a bomb
results in a cost.

Safety Gym
Recently, OpenAl developed the Safety Gym bench-
mark [Ray ef al., 2019] which is inspired by safety concerns
that have been observed in robotics control problems. Here,
each environment consists of a robot that is asked to tra-
verse a cluttered environment to accomplish one of a variety
of tasks, while satisfying constraints on its interactions with
the objects that clutter its environment. Like the tasks out-
lined above, these tasks allow for mixing and matching var-
ious components to allowing for varying levels of difficulty
and complexity when testing algorithms. The agent, task, and
constraint options are highly configurable; we outline the pre-
made options below.

Agents: Safety-gym includes three robots of increasing
complexity:

1. Point is a simple 2D-robot with two actuators — one for
turning and one for moving forward or backward.

2. Car has three wheels, the front two of which are inde-
pendently driven and a free-rolling rear wheel. Mov-
ing this robot requires coordination of the actuators that
drive the front wheels.

3. Doggo is a quadrupedal robot with bilateral symme-
try, designed so that a uniform random policy keeps the
robot upright and generates some movement. Each of its
four legs has three controls — two at the hip for azimuth
and elevation relative to the torso and one controlling
angle in the knee.

Tasks: These tasks are mutually exclusive, and can be con-
figured to have either sparse or dense rewards.

1. The Goal task involves moving the robot to a progres-
sion of goal positions.

2. The Button task asks the robot to press a series of but-
tons. The buttons are immobile and the agent is tasked
with press the currently highlighted one.

3. The Push task asks the robot with moving a box to a
series of goal positions.

Constraints: Each of the elements below provides a differ-
ent form of dynamics for the agent to understand and learn to
avoid. These elements can be mixed and matched as the user
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desires. At each step, the environment gives a cost signal for
each of the unsafe elements, in addition to an aggregate cost
signal that reflects the overall interaction with the elements.

1. Hazards are non-physical circles on the ground; the
agent is penalized for entering them.

2. Vases represent fragile objects; the agent is penalized for
touching or moving them.

3. Pillars are rigid barriers that the agent should not touch.

4. Buttons imitate goals; pressing one of these fake buttons
results in a penalty.

5. Gremlins are moving objects that the agent should not
touch.

5.2 Maetrics

Along with the above benchmarks, we propose a set of met-
rics to use when evaluating the efficacy of a constrained RL
algorithm. These metrics aim to provide a uniform answer to
the following question: how high of a cumulative discounted
reward can we achieve while simultaneously ensuring that
constraints are satisfied? As such, we suggest the following
metrics:

Reward: The expected cumulative return (Eq. 1).

Cumulative constraints:

e The expected cumulative cost (Eq. 3 and 4) or proba-
bilistic cumulative cost (Eq. 5).

* The sum of all costs divided by the total number of in-
teraction steps, a proxy for regret.

Instantaneous constraints:
¢ The total number of constraint violations.

¢ The violation rate: the total number of constraint viola-
tions divided by the total number of interaction steps.

6 Discussions
6.1 Theoretical Guarantees

In addition to algorithm development, it is useful to develop a
rigorous understanding of the developed algorithms. Perfor-
mance measures for learning algorithm performance include
1) eventual convergence to optimality, 2) the speed of con-
vergence to optimality, and 3) regret analysis [Kaelbling et
al., 1996]. While it is difficult, if not impossible, to ana-
lyze the performance of a general deep neural network, re-
searchers have analyzed learning-algorithm performance un-
der more restrictive conditions. Convergence has been stud-
ied under the assumption of convexity [Le ef al., 2019], and
regret has been studied in both finite [Azar er al., 2017;
Jin et al., 2018; Qiu et al., 2020; Efroni et al., 2020] and
infinite horizons [Singh et al., 2020].

In [Wu er al., 2015], the authors analyzed regrets for con-
strained multi-armed bandit (MAB) problems. MABs are a
simple version of MDPs, where agent actions do not change
the state of the system. In [Wu et al., 2015], the authors
consider constrained contextual bandits, contextual bandits
with budget and time constraints. They show that their pro-
posed algorithm achieves logarithmic regret except for certain
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boundary cases. Moving beyond bandits, researchers have
started to develop regret analysis for finite horizon RL [Qiu
et al., 2020; Efroni et al., 2020] — also known as episodic RL
— in which the agent interacts with the environment in a finite
sequence of episodes. Furthermore, [Singh er al., 2020] shed
light on the infinite horizon problem by bounding the reward
and costs simultaneously during unknown long term runs.

6.2 Zero Constraint Violation

Another issue is constraint violation during the policy train-
ing process. Approaches to solving cumulative constraints
often violate constraints during training but produce a trained
policy that is able to respect the constraints. Explicit instan-
taneous constraints can achieve zero constraint violation in
most cases since they can be checked before taking actions.
For implicit instantaneous constraints, only the human in the
loop method [Saunders er al., 2017] prevents constraint vio-
lation; this method, however, does not scale to complex envi-
ronments. Ideally, we would like a method that can achieve
zero constraint violation during training and not just at the
final optimal policy.

It is intractable to avoid all constraint violations in the
model-free setting as the agent needs to acquire environment
knowledge through trial and error. One possible approach is
to use more stringent thresholds when defining constraints in
the CMDP; this method, however, is not systematic. An open
question is how to provide a priori knowledge efficiently to
avoid constraint violation. Another complementary strategy
is to design better recovery methods to prevent an agent from
getting stuck in an infeasible region.

6.3 Mixed Constraints

In this paper, we discussed cumulative and instantaneous con-
straints separately, with the knowledge that one can some-
times be converted to the other [Satija et al., 2020; Xu and
Mannor, 2011]. In practice, various types of constraints
may occur simultaneously. For example, our application pa-
per [Liu et al., 2020a] handles cumulative and instantaneous
(explicit and implicit) constraints simultaneously for network
slicing resource allocation. Further efforts are needed to com-
bine multiply types of constraints.

7 Conclusion

This article discusses policy learning with constraints in
model-free reinforcement learning. We formulate the con-
straint learning problem as a CMDP and consider two main
kinds of constraints: cumulative and instantaneous. In or-
der to evaluate algorithm performance, we briefly introduce
benchmarks and metrics for constrained reinforcement learn-
ing. We also highlight limitations of current methods and
present promising directions for future research: algorithms
with theoretical guarantees, ability of achieving zero con-
straint violation and handling mixed constraints.
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